Journal of Organometallic Chemistry, 170 (1979) 105–115 © Elsevier Scquoia S.A., Lausanne – Printed in The Netherlands

PREPARATION OF DIPHENYLPHOSPHIDO- AND PHENYLTHIO-BRIDGED DINUCLEAR PLATINUM(II) COMPLEXES BY USE OF TRIMETHYL(DIPHENYLPHOSPHINO)- AND TRIMETHYL(PHENYLTHIO)-SILANE *

COLIN EABORN *, KEVIN J. ODELL and ALAN PIDCOCK * School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ (Great Britain) (Received October 27th, 1978)

Summary

The complexes $[Pt_2Cl_2(\mu-Cl)_2L_2]$ (L = triorganophosphine) react with 2 molar proportions of SiMe_3(PPh_2) in tetrahydrofuran or CH_2Cl_2 at room temperature to give the corresponding phosphido-bridged complexes *trans*- $[Pt_2Cl_2(\mu-PPh_2)_2$ -L_2]. The same products are formed, in lower yield, by treatment of *cis*- $[PtCl_2L_2]$ complexes with 1 molar proportion of SiMe_3(PPh_2), and the arsine complex *trans*- $[Pt_2Cl_2(\mu-PPh_2)_2(AsEt_3)_2]$ is produced analogously from *cis*- $[PtCl_2(AsEt_3)_2]$. The corresponding reaction with *trans*- $[Pt(Cl)H(PEt_3)_2]$ gives *trans*- $[Pt_2H_2$ - $(\mu-PPh_2)_2(PEt_3)_2]$. Treatment of *trans*- $[Pt_2Cl_2(\mu-Cl)_2L_2]$ complexes with SiMe_3-(SPh) gives *cis*- $[Pt_2Cl_2(\mu-Cl)(\mu-SPh)L_2]$, *trans*- $[Pt_2Cl_2(\mu-SPh)_2L_2]$, or *trans*- $[Pt_2 (SPh)_2(\mu-SPh)_2L_2]$ depending upon the molar proportion of SiMe_3(SPh) and the temperature used, while *cis*- $[PtCl_2L_2]$ gives *trans*- $[Pt(SPh)_2L_2]$. Ethylation of *trans*- $[PtCl_2(\mu-SPh_2)L_2]$ (L = P-n-Pr_3) with $[OEt_3]BF_4$ appears to give the chloride-bridged *trans*- $[Pt_2(\mu-Cl)_2(\mu-Cl)_2L_2][BF_4]_2$.

Introduction

The phosphido-bridged complexes trans- $[Pt_2Cl_2(\mu-PR_2)_2L_2]$ (L = triorganophosphine) have been obtained in the past by treatment of trans- $[Pt_2Cl_2(\mu-Cl)_2-L_2]$ complexes with PHR₂ in the presence of sodium ethoxide in EtOH/C₆H₆ [1] while the corresponding thioaryl- or thioalkyl-bridged complexes $[Pt_2Cl_2-(\mu-SR)_2L_2]$ have been made by treatment of trans- $[Pt_2Cl_2(\mu-Cl)_2L_2]$ complexes with RSH or RSNa [2]. It is known from the work of Abel and his colleagues that SiMe₃(PPh₂) reacts readily with some transition metal chlorides to give SiMe₃Cl and species containing M—PPh₂ bonds [3,4] (e.g. NiCl₂ \rightarrow [(Ph₂P)₂Ni]_n

^{*} No reprints available.

[3]), while the tin compounds $SnMe_3(SR)$ and related species correspondingly give M—SR bonds [4-7] (e.g. $PtCl_2 \rightarrow [(RS)_2Pt]_n$ [6]), and so we decided to examine the reactions of $[Pt_2Cl_2(\mu-Cl)_2L_2]$ and $[PtCl_2L_2]$ complexes with SiMe₃-(PPh₂) and SiMe₃(SPh). The results are presented below.

After this work [8] was complete, Ebsworth and his colleagues reported the preparation of the novel singly-bridged species $[L_2XPt-PH_2-PtXL_2]Y$ (e.g. X = Y = Cl; X = H, Y = Br) by treatment of trans- $[PtX_2(PEt_3)_2]$ (X = Cl, Br or I) or trans- $[PtH(X)(PEt_3)_2]$ (X = Cl or Br) with one molar proportion of SiMe₃(PH₂) [9].

Results and discussion

Reactions of $SiMe_3(PPh_2)$

The chloride-bridged complexes trans- $[Pt_2Cl_2(\mu-Cl)_2L_2]$ (L = PMe₃, PEt₃, PPr₃ or PMe₂Ph) were found to react rapidly with 2 molar proportions of SiMe₃(PPh₂) in THF (tetrahydrofuran) at room temperature to give the corresponding phosphido-bridged complexes III. Characterization data are given in Table 1, and ³¹P-{¹H} NMR data in Table 3; the NMR data indicate a *trans*-configuration for the complexes III *.

Perhaps the simplest of the various sequences which can be postulated for the course of the reaction is that involving initial splitting of the chloride bridges to give the mono-nuclear complex I. This could then lose SiMe₃Cl to give the 3-coordinate phosphido-species II, which would dimerize to give III, as in Scheme 1.

SCHEME 1

(111)

In formulating possible routes it is not, however, necessary to assume that mononuclear intermediates are involved, since plausible sequences can be written involving successive replacement of the bridging chloride ligands, as, for example, in Scheme 2.

^{*} A full discussion of the assignments [8] will be published elsewhere [10].

SCHEME 2

In some cases small quantities of the complexes cis-[PtCl₂(PHPh₂)(PR₃)] were also produced (see Table 2), presumably by interaction of the [Pt₂Cl₄(PR₃)₂] complexes with PHPh₂ formed by reaction of SiMe₃(PPh₂) with traces of moisture.

The complex $[Pt_2Cl_2(\mu-PPh_2)_2(P-n-Pr_3)_2]$ obtained (in 75% yield) as described above was identical with that obtained by treatment of *cis*- $[PtCl_2(PPh_2H)(P-n-Pr_3)]$ with sodium ethoxide in ethanol, as described by Chatt and Davidson [1], but the yield in the latter reaction (viz. 38%) was markedly lower. The phosphido-bridged complexes III with L = PMe_3 or PMe_2Ph were also prepared by treatment of *cis*- $[PtCl_2L_2]$ complexes with one molar proportion of SiMe_3(PPh_2), though for L = PMe_3 the yield was markedly lower than that from $[Pt_2Cl_4L_2]$. The arsine complex *trans*- $[Pt_2Cl_2(\mu-PPh_2)_2(AsEt_3)_2]$ was obtained analogously from *cis*- $[PtCl_2(AsEt_3)_2]$.

The course of this reaction could, by analogy with that suggested in Scheme 1 for the reaction of the $[Pt_2Cl_4L_2]$ complexes, be written most simply (see Scheme 3) as involving initial displacement of a ligand L, with subsequent steps as in Scheme 1.

cis-[PtCl₂L₂] + Me₃SiPPh₂ \rightarrow [PtCl₂L{PPh₂(SiMe₃)}]

(I) ↓ —Me₃SiCl

(II)

$$[Pt_2Cl_2(\mu-PPh_2)_2L_2] \leftarrow [PtCl(PPh_2)L]$$

SCHEME 3

However, such ligand-interchange as the initial step seems unlikely in view of the observation by Ebsworth et al. that the products from treatment of trans-[PtX₂-(PEt₃)₂] with 0.5 mol of SiMe₃(PH₂) retain all the PEt₃ ligands [9], so we suggest that the loss of the ligand L occurs in a later step (Scheme 4).

 $[PtCl_2L_2] + SiMe_3(PPh_2) \rightarrow [PtCl(PPh_2)L_2] + Me_3SiCl$

(IV)

2 [PtCl(PPh₂)L₂] → [Pt₂Cl₂(μ -PPh₂)₂L₂] + 2 L scheme 4.

(III)

(continued on p. 110)

_	
ĽE	
PAB	
	-

METHODS OF PREPARATION, YIELDS, ANALYSES, AND IR DATA FOR THE COMPLEXES [Pt₂X₂(μ -Y)₂L₂]

Confign,	L	×	Y	Method (yield, %) ^a	Found (caled.) (%)	M.p.	$\nu(\text{PtX})^{b}$
					C	Н	(c)	(r ma)
trans	PMc3	ם	PPh2	A(80); B(35)	36,5(36,6)	4,1(3,9)	333335	295
trans	PEt ₃	ច	PPh_2	A(60)	40.2(40.5)	5.0(4.7)	270	293
trans	P-n-Pr3	ច	PPh2	A(75); C(38)	43.2(43,8)	5.5(5.4)	253—254 ^C	292
trans	PMe2Ph	ច	PPh_2	A(60); B(60); C(25)	43.3(43.4)	3,9(3,8)	278-280	294
trans	AsEta	ច	PPh2	B(55)	37.1(37.4)	4.7(4.4)	232-236	291
trans	PEt ₃	Н	PPh2	D(20)	43.2(43.3)	5,0(5,2)	170 d	о
trans	PMeg	ច	SPh	A(92)	26.0(26.0)	3.4(3.4)	269 - 270	319
trans	PEt ₃	ច	SPh	A(58)	30,9(31,5)	4,0(4.4)	238	319
trans	PEt ₃	SPh	SPh	A(25) ^j	39.9(40.7)	4.4(4.7)	154 - 164	
trans	P-n-Bu3	5	SPh	A(35)	39,9(39,9)	6.0(5.95)	136-137	321
trans	P-n-Pr3	5	SPh	A(45); B(65)	36.5(36.0)	5.4(5.2)	$162 - 165^{f}$	322
trans	PMc ₂ Ph	ច	sPh	A(75); E(40)	35.5(35.2)	3,3(3,4)	210-214	326
cis	P-n-Pr3	5	, 1 SPh	G(50); F	31.2(31.1)	5,3(5,1)	$180 - 184^{6}$	331, 267
cis	P-n-Pr ₃	ច	ŜРh ^c	A(50); F(85)	35.0(36.0)	5,2(5,2)	132	326
trans	P-n-Pr3	5	SEt	F(50)	29.1(29.2)	5,6(5,8)	$154 - 157^{h}$	320
cis	P-n-Pr3	ច	SEt	F(50)	29.1(29.2)	5.7(5.8)	123 <i>i</i>	318
cis	P-n-Pr ₃	ថ	SEtPh	H(35)	33.2(33.2)	5.3(5.1)	195	270
^a A, [Pt ₂ X ₄ L ₂] + 2 SiMe ₃ Y in CF	12Cl2; B,	cis-[PtX2L2] + Si	Me ₃ Y in CH ₂ Cl ₂ ; C, [Pt ₂ X H for C Fpt Y, T 14 1 su	4L ₂] + YH + 2 NaO	Et in EtOH; D, tra	$\frac{1}{100} \left[PtH(Cl) L_2 \right] + Sl$	Me3(PPh2) in hexane;
$v_{\nu}(p_{1}-H)$ 200 were used. The	2 cm ⁻¹ (lit. [1] 20	0.5 cm ⁻¹ oduct we	¹ Lit. [2] 165°C. s confirmed by c	$\begin{bmatrix} 1 \\ K \end{bmatrix}$ Lit. [2] 182°C. ^H Lit. [2] omparison of its ³¹ P-{ ¹ H}	1 157°C. ¹ Lit. [2] 1 NMR spectrum wit	$25-127^{\circ}C$, Possi h that of an autho	bly more than 2 equ tits sample [22]	ivalents of Me ₃ SlY

,

FORMATION AND CHARACTERISTICS OF THE COMPLEXES [PtX_LL']

TABLE 2

.

.

.

•

Confign,	Г	Ľ,	×	Method ^a	Found (caled.	(%)	M.p.	$\nu(Pt-X)^{b}$	31P-{1H} NMR C	Rectange Parks and a grade
		, ,		(y.teid, %)	υ	H	6)	(1_m2)	δ (ppm) [¹ J(PtP)(Hz)]	² J(PPtP) (Hz)
cis	PMe3	PHPh ₂	ច	A	34,6(34,1)	3,8(3,8)	274-280	282, 312	164.2[3306: 153.8[3616]	20
cis	PEt3	PHPh ₂	ថ	V	38,5(37,9)	4.8(4.6)	132136	295, 320		ì
cis	P-n-Pr3	PHPh2	ច	A	40,7(40,2)	5.0(5.2)	140—144 ^d	295, 320	0	
cis	PPh ₃	PHPh2	6	A	50.6(50.4)	3.8(3.7)	285	294, 318	143.6[3572]: 125.0[3582]	15
trans	PMe ₂ Ph	PMe ₂ Ph	SPh	B(90)	48,7 (48,8)	4.7(4.7)	185—187 ^f		142.2[2590]:	
trans	PMePhz	PMePh ₂	SPh	B(78)	56.6(56.1)	4.3(4.5)	190 - 194		133.4[2722]	
cis	¹ ₂ DPPE ^h	2DPPE	hqs	B(84)			210-220 ^g		92,7[3047]	
^a A, by-pr Nujol. ^c S ¹ J(Pt—H)	oducts formed olutions in CH 393; ² J(PtPH)	in small and 2Cl2; chemica 94; ³ J(PPtPH	variable yi l shifts reli) 10.5 Hz,	eld in the reactio ative to (MeO) ₃ P ^f Lit. [11] 181-	n between [Pt ₂ X; in C ₆ D ₆ ; positive 182°C, ^R Lit. [23	2L2] and SiMe. values upfield 1 222-225°C.	$\frac{1}{h}$ DPPE = 1,2-bise	<i>is</i> -[PtCl ₂ L ₂] + Lit. [1] 142 ⁿ (diphenylphos	· SiMe ₃ (SPh) (excess) (1/3). ^b 1 C. ^e ¹ II NMR, τ 3.74 (PPh ₂ H), phino)ethane.	E

109

`• •

-

٠

. •

The intermediate IV could be formed via $[PtClL_2{PPh_2SiMe_3}Cl]$ or $[PtCl_2(PPh_2)L_2(SiMe_3)]$ by loss of SiMe_3Cl, as suggested by Ebsworth et al. for the reaction of SiMe_3(PH_2). We should emphasize, however, that no species containing either terminal P(SiMe_3)Ph_2 or PPh_2 ligands were detected in the ³¹P-{¹H} NMR spectra of reaction mixtures examined at room temperature.

Treatment of trans-[Pt(Cl)H(PEt₃)₂] with SiMe₃(PPh₂) in hexane gave trans-[Pt₂H₂(μ -PPh₂)₂(PEt₃)₂], and the product was identical with that obtained by treatment of trans-[PtH(Cl)(PEt₃)₂] with PHPh₂ and sodium ethoxide in benzene as described by Chatt and Davidson [1]. When the reaction between trans-[PtH(Cl)L₂] (L = PEt₃ or PMe₂Ph) and SiMe₃(PPh₂) was carried out in chloroform the products were the dichlorides trans-[Pt₂Cl₂(μ -PPh₂)₂L₂], presumably formed by reaction of the initially formed dihydrides, trans-[Pt₂H₂(μ -PPh₂)₂L₂], with the solvent. The reactivity of the Pt—H bonds in the latter complexes can be associated with large trans-effect of the bridging phosphido group [1,9], the large trans-influence of which is reflected in the low Pt—H stretching frequency, viz. 2002 cm⁻¹. The lability of the hydride ligand is also apparent in the reaction of [Pt₂H₂(μ -PPh₂)₂(PEt₃)₂] with SiPh₂H₂, which takes place with a vigorous evolution of dihydrogen and formation of a species thought to be trans-[Pt₂(μ -PPh₂)₂(PEt₃)₂(SiPh₂H)₂] on the basis of its ³¹P-{¹H} NMR spectrum.

Reactions of SiMe₃(SPh)

The chloride-bridged complexes trans- $[Pt_2Cl_4L_2]$ (L = triorganophosphine, see Table 1) were found to react rapidly with one molar proportion of SiMe₃(SPh) in CH₂Cl₂ at room temperature to give the mixed thiophenyl- and chloride-bridged complexes *cis*- $[Pt_2Cl_2(\mu-Cl)(\mu-SPh)L_2]$. Use of 2—3 molar proportions of SiMe₃(SPh) under the same conditions or in THF gives the doubly thiophenyl-bridged complexes *cis*- $[Pt_2Cl_2(\mu-SPh)_2L_2]$, while warming the $[Pt_2Cl_4L_2]$ complex (L = PMe_2Ph) with a 10-fold excess of SiMe₃(SPh) gives trans- $[Pt_2(SPh)_2(\mu-SPh)_2L_2]$. Characterization data are given in Tables 1 and 2, and NMR data in Table 3.

TABLE 3 SOME ³¹P- {¹H} NMR PARAMETERS ^a FOR THE COMPLEXES

L	x	·δ (1,2) (ppm)	δ(3,4) (ppm)	J(1—2) (Hz)	J[(1,2)(3,4)] (Hz)	J[(1,4)—J(2,3)] (Hz)	J(34) (Hz)
P-n-Pr3	Cl	134.5	275.5	9.5	375.9	5.0	176.0
PEt3	Cl	125.5	276.4	-7.6	374.2	6.7	178.5
PMe ₂ Ph	Cl	147.5	277.9	-8.2	389.9	5.7	176.7
PEt ₃	н	114.0	234.8	-7.3	295.2	-8.4	73.2
PEt3	SiHPh ₂	123.2	262.8	-6.1	274.1	-9.9	137.9
AsEt ₃	C1 -		283.5 ^b				10.10

^a In CH₂Cl₂ at 25°C; chem. shifts relative to (MeO)₃P in C₆D₆; positive values upfield from reference; sweep width 10,000 Hz, resolution 2.44 Hz. Details of the assignments will be published separately [10].. ^b J(3-5) 2529; J(4-5) 2178.

Characterization data are given in Tables 1 and 2, and NMR data in Table 3.

The complexes $[Pt_2Cl_2(\mu-Cl)(P-n-Pr_3)_2(\mu-SR)]$ and $[Pt_2Cl_2(P-n-Pr_3)_2(\mu-SR)_2]$ have been made previously by treatment of $[Pt_2Cl_4(P-n-Pr_3)_2]$ with RSH or RSNa (R = Et, cyclohexyl, Ph), and replacement of the terminal halogens, to give *trans*- $[Pt_2(SPh)_4(P-n-Pr_3)_2]$, is brought about slowly by the sodium salts RSNa [2].

Analysis of the ³¹P-{¹H} NMR spectra of solutions in CH₂Cl₂ [10] indicated that the product $[Pt_2Cl_2(\mu-Cl)(\mu-SPh)(P-n-Pr_3)_2]$ exists exclusively in the *cis*configuration, in agreement with an earlier observation [2], whereas a sample of $[Pt_2Cl_2(SEt)_2(P-n-Pr_3)_2]$ after several days in CH₂Cl₂ at room temperature contained the *cis* and *trans* isomers in ca. 60/40 ratio (cf. 87/13 at equilibrium [2]) and an essentially pure sample of *cis*- $[Pt_2Cl_2(SPh)_2(P-n-Pr_3)_2]$ underwent 60% isomerization to the *trans*-isomer under similar conditions (cf. 94% at equilibrium [2]).

Refluxing of a benzene solution containing cis-[PtCl₂L₂] (L = PMe₂Ph, PMePh₂ or $\frac{1}{2}$ DPPE) and an excess of SiMe₃(SPh) gave trans-[Pt(SPh)₂L₂]. Use of equimolar amounts of SiMe₃(SPh) and the complex with L = PMe₂Ph did not give [PtCl(SPh)L₂], but instead an equimolar mixture of trans-[Pt(SPh₂)₂L₂] and unchanged cis-[PtCl₂L₂]. This is consistent with the observation that the reaction of trans-[PtCl(SiPh₃)L₂] (L = PMe₂Ph) with an excess of thiophenol gives equimolar amounts of cis-[PtCl₂L₂] and trans-[Pt(SPh)₂L₂], presumably by disproportionation of the initially-formed [PtCl(SPh)L₂] [11].

A sample of the complex $[Pt_2Cl_2(\mu-SPh)_2L_2]$ (L = PMe₂Ph), identical with that made from $[Pt_2Cl_4L_2]$ and SiMe₃(SPh) was obtained by interaction of *cis*- $[PtCl_2(SEt_2)_2]$ and *trans*- $[Pt(SPh)_2L_2]$:

 $cis-[PtCl_2(SEt_2)_2] + trans-[Pt(SPh)_2(PMe_2Ph)_2] \rightarrow trans-[Pt_2Cl_2(\mu-SPh)_2(PMe_2Ph)_2]$

The reaction of trans- $[Pt_2Cl_2(\mu-SPh)_2L_2]$ (L = P-n-Pr₃) with [OEt₃]BF₄ was examined to see whether it would give the sulphide-bridged salt $[Pt_2Cl_2(\mu$ -SEtPh)₂L₂][BF₄]₂ by alkylation at sulphur. The product gave a satisfactory analysis for this formulation, showed the characteristic IR bands of the BF₄⁻ ion, and behaved as a 2/1 electrolyte in nitromethane. However, there was no IR band in the region 300–360 cm⁻¹ where the ν (Pt–Cl) band was expected, and the value of the coupling constant ${}^{1}J(Pt-P)$, viz. 3994 Hz, was rather large for a phosphine trans to a thioether ligand (cf. ¹J(Pt-P) 3386 Hz in trans-[PtCl₂- $(SMe_2)(P-n-Bu_3)$, and the presence of a band at 270 cm⁻¹ in the IR spectrum strongly suggests that the chloride rather than the sulphide ligands occupy the bridging portions, i.e. that the product is trans- $[Pt_2(\mu-Cl)_2(SEtPh)_2L_2][BF_4]_2$. Analogous rearrangements have been observed previously with $[Pt_2Cl_4(SR_2)_2]$ species [12]. Complexes giving ³¹P-{¹H} NMR spectra (see Table 3) similar to that of the suspected trans- $[Pt_2(\mu-Cl)_2(SEtPh)_2L_2][BF_4]_2$ were observed in solutions obtained by treating trans-[PtCl₂(μ -SPh)₂L₂] (L = P-n-Pr₃) with HBF₄ (δ 138.1 ppm, ¹J(Pt-P) 3997 Hz] and trans-[Pt₂Cl₂(μ -SPh)₂L₂] (L = PMe₂Ph) with SO₂(OMe)F [δ , 155.4 ppm, ¹J(Pt-P) 4143 Hz], and these products probably contain SHEt and SMePh ligands, respectively, in terminal positions. It is noteworthy that cationic complexes of the type [Pt₂Cl₂(SR₂)₂L₂][X]₂ $(L = PMe_3)$ could not be obtained by treatment of $[PtCl_2(SR_2)L]$, $L = PMe_3$) with $AgBF_4$ or of $[Pt_2Cl_4(SMe_2)_2]$ with PR_3 [12].

Experimental

General. All reactions were carried out in dried deoxygenated solvents under nitrogen.

The IR spectra were recorded as Nujol mulls between CsI plates.

The ³¹P-{¹H} NMR spectra were recorded with solutions in CH_2Cl_2 at 40.48 MHz on a JEOL PFT 100 Fourier Transform instrument, the field being locked to the ²H resonance of the C₆D₆ solvent used for the external reference, (MeO)₃P. Positive values of the chemical shift are upfield from the latter.

Preparation of $[PtCl_2L_2]$ and $[Pt_2Cl_4L_2]$ complexes. Published procedures were used to prepare the following: (a) *cis*- $[PtCl_2L_2]$ with L = PMe₃ [13], PEt₃ [14], P-n-Pr₃ [15], P-n-Bu₃ (ν (Pt-Cl) 288, 310 cm⁻¹) [16], PPh₃ [14], PMe₂Ph [17], 0.5 DPPE [18], AsEt₃ [14]; and (b) *trans*- $[Pt_2Cl_4L_2]$, with L = PMe₃, PEt₃ or PPh₃ [19], P-n-Pr₃ [20], PMe₂Ph (ν (Pt-Cl) 255, 324, 357 cm⁻¹) [17] and PEt₂Ph (ν (Pt-Cl) 269, 322, 354 cm⁻¹) [15].

Preparation of $SiMe_3(PPh_2)$ and $SiMe_3(SPh)$. These were made as described in refs. 21 and 22, respectively. The ³¹P-{¹H} NMR signal from SiMe₃(PPh₂) in CH₂Cl₂ was at δ 196.8 ppm, and the ¹H NMR spectrum of SiMe₃(SPh) gave the SiCH₃ resonance at τ 10.08(s).

Preparation of trans- $[Pt_2Cl_2(\mu-PPh_2)_2L_2]$ and trans- $[Pt_2H_2(\mu-PPh_2)L_2]$. Authentic samples of the compounds trans- $[Pt_2Cl_2(\mu-PPh_2)_2(P-n-Pr_3)_2]$, trans- $[PtCl_2-(\mu-PPh_2)_2(PMe_2Ph)_2]$, and trans- $[Pt_2H_2(\mu-PPh_2)_2(PEt_3)_2]_2$ were made by Chatt and Davidson's methods [1].

Reactions of $SiMe_3(PPh_2)$ with $[Pt_2Cl_4L_2]$ and $[PtCl_2L_2]$. Some typical procedures are described below.

(a) A solution of SiMe₃(PPh₂) (0.19 g, 0.74 mmol) in THF (tetrahydrofuran) (15 cm³) was added dropwise to a stirred suspension of $[Pt_2Cl_4(PMe_3)_2]$ (0.25 g, 0.37 mmol) in THF (15 cm³). The orange solution was stirred at room temperature, and after 0.5 h the orange colour had faded and a white precipitate began to appear. After 16 h of stirring the mixture was filtered, and the white precipitate was washed with THF and dried under vacuum to give *trans-sym*-dichloro-di- μ -(diphenylphosphido)bis(trimethylphosphine)diplatinum(II) (0.29 g, 80%). (For data see Tables 1 and 3).

(b) A solution of SiMe₃(PPh₂) (0.14 g, 0.53 mmol) in THF (15 cm³) was added dropwise with stirring to a suspension of $[Pt_2Cl_4(PEt_3)_4]$ (0.18 g, 0.26 mmol) in THF (10 cm³). A transitory orange colour was noted as in (a), but no precipitate appeared. The mixture was stirred for 18 h at room temperature and the solvent removed under vacuum to leave an oil, which was washed with acetone (5 cm³) to give a white solid. This was dissolved in boiling CH₂Cl₂ and hexane added until a cloudiness appeared. Cooling then gave *cis*-[PtCl₂(PPh₂H)-(PEt₃)] (0.05 g, 17%) as colourless crystals, data for which are given in Table 2. Addition of more hexane to the mother liquor then gave *trans-sym*-dichlorodi- μ -(diphenylphosphido)bis(triethylphosphine)diplatinum(II) (0.17 g, 60%) (see Tables 1 and 3).

(c) Dropwise addition of $SiMe_3(PPh_2)$ (0.15 g, 0.60 mmol) in THF (15 cm³) to a stirred suspension of *cis*-[PtCl₂(PMe₃)₂] (0.24 g, 0.58 mmol) in THF (10 ml) gave a yellow solution, and subsequently a white precipitate. The mixture was stirred for 12 h at room temperature then filtered. The precipitate

was washed with acetone (5 cm^3) and recrystallized from CH_2Cl_2 to give *trans-sym*-dichlorodi- μ -(diphenylphosphido)bis(trimethylphosphine)diplatinum-(II) (0.041 g, 15%). The THF mother liquor was evaporated to leave a red oil which was washed with acetone and hexane, then crystallized by addition of ether to its solution in CH_2Cl_2 to give an additional yield (0.057, 20%) of the same product, which was identical with that prepared as described in (a).

(d) Dropwise addition of SiMe₃(PPh) (0.16 g, 0.65 mmol) in THF (10 cm³) to a solution of $[PtCl_2(AsEt_3)_2]$ (0.32 g, 0.64 mmol) in THF (20 cm³) gave a pale yellow solution. The solvent was removed under vacuum and hexane was added to give a white powder, which was recrystallized from THF by addition of hexane to give *trans-sym*-dichlorodi- μ -(diphenylphosphido)bis(triethylarsine)-diplatinum(II), (0.20 g, 55%) (see Tables 1 and 3).

(e) A mixture of SiMe₃(PPh₂) (0.17 g, 0.67 mmol), trans-[PtH(Cl)(PEt₃)₂] (0.25 g, 0.62 mmol), THF (15 cm³) and hexane (10 cm³) was stirred for 2 h at room temperature to give a deep red solution. The solvents were removed under vacuum, and the residue was extracted with a little warm benzene. The benzene solution was diluted with methanol, and cooled to give yellow crystals of trans-sym-dihydro-di- μ -(diphenylphosphido)bis(triethylphosphine)diplatinum-(II) (0.62 g, 20%). Its properties (see Tables 1 and 3) were identical with those of an authentic sample [1].

When the reaction was carried out in CHCl₃ with recrystallization from CHCl₃/pentane, the product was $[Pt_2Cl_2(\mu-PPh_2)_2(PEt_3)_2]$, identical with that prepared as described under (b).

Reactions of SiMe₃(SPh) with $[Pt_2Cl_4L_2]$ and $[PtCl_2L_2]$. (a) A solution of SiMe₃(SPh) (0.079 g, 0.44 mmol) in THF (10 cm³) was added to a stirred suspension of $[Pt_2Cl_4(PMe_3)_2]$ (0.15 g, 0.22 mmol) in CH₂Cl₂ (10 cm³) to give a yellow solution. This was kept at 50°C for 2 h, then the solvent was removed to leave a yellow powder. This was taken up in CH₂Cl₂ (5 cm³), and the solution was filtered. Addition of hexane and cooling gave *trans-sym*-dichlorodi- μ -(phenylthio)bis(trimethylphosphine)diplatinum(II) (0.165 g, 92%) (see Tables 1 and 4).

(b) A solution of SiMe₃(PPh₂) (0.064 g, 0.35 mmol) in CH₂Cl₂ (6 cm³) was added dropwise with stirring to [PtCl₄(P-n-Pr₃)₂] (0.30 g, 0.35 mmol) in CH₂Cl₂ (10 cm³). The mixture was stirred for 2 h at room temperature and the solvent then removed under vacuum. The residue was recrystallized from ethanol to give pale yellow crystals of *cis-sym*-dichloro- μ -chloro- μ -(phenylthio)bis(tripropylphosphine)diplatinum(II) (0.16 g, 50%) (see Tables 1 and 4).

(c) A solution of SiMe₃(SPh) (0.17 g, 0.92 mmol) in THF (5 cm³) was added dropwise to a stirred suspension of *cis*-[PtCl₂(PMe₂Ph)₂] (0.50 g, 0.92 mmol) in THF (18 cm³) and the mixture was warmed to 60°C, when the suspension disappeared to give a yellow solution. After 1 h at 60° the mixture was diluted with hexane (15 cm³) and cooled, to give a pale yellow crystals which were filtered off and shown by their IR spectrum to be mainly recovered *cis*-[PtCl₂-(PMe₂Ph)₂]. The filtrate was taken to dryness under vacuum and the residue recrystallized from THF/hexane to give yellow crystals of *trans*-di(phenylthio)bis(phenyldimethylphosphine)platinum(II) (0.26 g, 37%) (see Table 2).

When the procedure was repeated with ca. 3 molar proportions of $SiMe_3$ -(SPh) the same product was obtained in 90% yield, and the analogous products

Complex	δ (ppm)	¹ J(Pt—P) (Hz)	2J(Pt—P) (Hz)	³ J(Pt-P) (Hz)	⁴ J(Pt—P) (Hz)
trans-[Pt2Cl2(µ-Cl)2(P-n-Pr3)2	138.4	3810	189	-24.9	3.7
cis-[Pt2Cl2(µ-Cl)2(P-n-Pr3)2]	140.8	3699			<3
trans-[Pt ₂ Cl ₂ (μ -Cl) ₂ (P-n-Bu ₃) ₂]	137.9	3814	185	-22.6	<3
cis-[Pt2Cl2(µ-Cl)2(P-n-Bu3)2]	140.3	3702			<3
trans-[Pt2Cl2(µ-SPh)2(P-n-Pr3)2]	138.2	3156	1149	51.3	11.0
$cis-[Pt_2Cl_2(\mu-SPh)_2(P-n-Pr_3)_2]$	139.0	3160	1270	-7.2	5.2
trans-[PtCl2(µ-SEt)2(P-n-Pr3)2]	137.8	3087	1172	-48.6	13.3
cis -[Pt ₂ Cl ₂ (μ -SEt) ₂ (P-n-Pr ₃) ₂]	140.0	3177	963	-9.5	6.8
trans-[Pt ₂ Cl ₂ (µ-SPh) ₂ (PMe ₃) ₂] ^b	158.7	3157		-53.7	14.6
trans-[Pt2Cl2(µ-SPh)2(PMe2Ph)2]	151.8	3179		53.7	14.7
trans-[Pt2Cl2(µ-SPh)2(PEt3)2]	129.3	3169		-53.7	9.8
trans-[Pt2(SPh)2(µ-SPh)2(PEt3)2]	128.7	3274		-34.2	9.8
trans-[Pt2(SPh)2(µ-SPh)2(PMe2Ph)2]	153.5	3243			
cis-[Pt2Cl2(µ-Cl)(µ-SPh)(P-n-Pr3)2]	139.7	3940			<3
cis-[Pt ₂ Cl ₂ (μ-Cl)(μ-SPh)(PMe ₃) ₂]	164.5	3967			<3
trans-[Pt2(u-Cl)2(SEtPh)2(P-n-Pr3)2][BF4]2	138.0	3994			<3
trans-[Pt ₂ (µ-Cl) ₂ (SHPh) ₂ (P-n-Pr ₃) ₂][BF ₄] ₂	138.1	3997			<3
trans-[Pt ₂ (μ -Cl) ₂ (SMePh) ₂)(PMe ₂ Ph) ₂][SO ₃ F] ₂	155.4	4143			<3

SOME ³¹P- {ⁱH} PARAMETERS FOR DINUCLEAR PLATINUM COMPLEXES, CONTAINING μ -CI OR μ -SR BRIDGES ^a

^a Solutions in CH₂Cl₂ unless otherwise indicated. Chemical shifts are relative to (MeO)₃P in C₆D₆, with positive values upfield from the reference. ^b In CD₂Cl₂.

containing $PMePh_2$ and DPPE ligands were made in this way (Table 2).

(d) A CH₂Cl₂ solution of $[Pt_2Cl_4(PMe_2Ph)_2]$ and Me₃SiSPh in 1/10 molar ratio was refluxed for 2 h. The very insoluble product could not be properly purified, but its ³¹P-{¹H} NMR spectrum (obtained over a long accumulation time) was identical with that of authentic $[Pt_2(SPh)_4(PMe_2Ph)_2]$ [22].

Interaction of trans- $[Pt(PMe_2Ph)_2(SPh)_2]$ and cis- $[PtCl_2(SEt_2)_2]$. A mixture of trans- $[Pt(PMe_2Ph)_2(SPh)_2]$ (0.20 g, 0.45 mmol) and cis- $[PtCl_2(SEt_2)_2]$ (0.31 g, 0.45 mmol in benzene (20 cm³) was heated under reflux for 6 h. The solvent was removed and the residue recrystallized from benzene/hexane to give the yellow trans-sym-dichloro-di- μ -(phenylthio)bis(phenyldimethylphosphine)diplatinum(II) (0.17 g, 40%) (Table 1).

Interaction of $[Pt_2Cl_2(\mu$ -SPh)_2(P-n-Pr_3)_2] and $[Et_3O]BF_4$. A solution of $[Et_3O]BF_4$ (0.08 g, 0.42 mmol) in CH_2Cl_2 (4 cm³) was added dropwise to a stirred solution of trans- $[Pt_2Cl_2(SPh)_2(P-n-Pr_3)_2]$ (0.16 g, 0.16 mmol) in CH_2Cl_2 (4 cm³) at 40°C. The mixture was heated under reflux for 1 h, then the solvent was evaporated to leave a yellow oil, which solidified upon addition of methanol The solid was taken up in the minimum volume of methanol, an equal volume of ether was added, and the solution filtered through Celite. Hexane was added until the solution became cloudy, and cooling gave the yellow trans-sym-di(μ -chloro)di(ethylphenylsulphide)bis(tripropylrhosphine)diplatinum(II) tetra-fluoroborate (0.068,g, 35%), (m.p. 195°C, ν (Pt-Cl) 270 cm⁻¹, ν (BF₄) 1050 and 525 cm⁻¹; molar conductivity in MeNO₂, 134 S cm² mol⁻¹ (1/2 electrolyte); ³¹P-{¹H} NMR; δ 138.0 ppm, ¹J(Pt-P) 3994 Hz. (Found: C, 33.2; H, 5.3. C₃₄H₆₂B₂Cl₂F₈P₂Pt₂S₂ calcd.: C, 33.2; H, 5.1%.)

TABLE 4

Acknowledgements

We thank the S.R.C. for the award of a Research Studentship to K.J.O., and the Dow Corning Chemical Co., Ltd., for a gift of chlorotrimethylsilane.

References

- 1 J. Chatt and J.M. Davidson, J. Chem. Soc., (1964) 2433.
- 2 J. Chatt and F.A. Hart, J. Chem. Soc., (1953) 2363; ibid., (1960) 2807.
- 3 E.W. Abel and I.H. Sabherwal, J. Organometal. Chem., 10 (1967) 491; E.W. Abel, R.A.N. McLean and I.H. Sabherwal, J. Chem. Soc. A, (1968) 2371.
- 4 E.W. Abel and D.A. Armitage, Adv. Organometal. Chem., 5 (1967) 1.
- 5 E.W. Abel, B.C. Crosse and D.B. Brady, J. Amer. Chem. Soc., 87 (1965) 4397; E.W. Abel and B.C. Crosse, J. Chem. Soc. A, (1966) 1141; E.W. Abel, A.M. Atkins, B.C. Crosse and G.V. Hutson, ibid., (1968) 687.
- 6 W.T. Reichle, Inorg. Chem., 1 (1963) 650.
- 7 W.T. Reichle, J. Org. Chem., 26 (1961) 4634.
- 8 K.J. Odell, Ph.D. Thesis, University of Sussex, 1976.
- 9 E.A.V. Ebsworth, B.J.L. Henner and F.J.S. Reed, J. Chem. Soc. Dalton, (1978) 272.
- 10 B.T. Heaton, K.J. Odell and A. Pidcock, to be submitted.
- 11 J. Chatt, C. Eaborn, S.D. Ibekwe and P.N. Kapoor, J. Chem. Soc. A, (1970) 1343.
- 12 P.L. Goggin, R.J. Goodfellow and F.J.S. Reed, J. Chem. Soc. Dalton, (1974) 576.
- 13 J.G. Evans, P.L. Goggin, R.J. Goodfellow and J.G. Smith, J. Chem. Soc. A, (1968) 464.
- 14 K.A. Jensen, Z. Anorg. Allg. Chem., 229 (1936) 225.
- 15 S.O. Grim, R.L. Keiter and W. McFarlane, Inorg. Chem., 6 (1967) 1133.
- 16 G.B. Kauffman and L.A. Teter, Inorg. Synth., 7 (1963) 245.
- 17 J.M. Jenkins and B.L. Shaw, J. Chem. Soc. A, (1966) 770.
- 18 G. Booth and J. Chatt, J. Chem. Soc., (1966) 634.
- 19 R.J. Goodfellow and L.M. Venanzi, J. Chem. Soc., (1965) 7533.
- 20 J. Chatt and L.M. Venanzi, J. Chem. Soc., (1955) 2787.
- 21 W. Kuchen and H. Buchwald, Chem. Ber., 92 (1959) 227.
- 22 K.A. Hooton and A.I. Allred, Inorg. Chem., 4 (1965) 671.
- 23 B.T. Heaton, personal communication.